\qquad Date \qquad

Chanter 3 \& 4 - Final Review

Identify each statement as either true (T) or false (F) by circling the correct choice.

1) $\mathrm{T} \quad \mathrm{F}$ The slope of a line depends on which points on the line you choose to calculate it.
2) T F If two parallel lines are cut by a transversal then the alternate interior angles are supplementary.
3) T F You can determine the slope of a segment if you are given only the coordinates of its midpoint.
4) T F If any two lines are cut by a transversal then the alternate exterior angles are congruent.
5) T F If two lines are cut by a transversal forming pairs of congruent corresponding angles, congruent alternate interior angles, or congruent alternate exterior angles, then the lines are parallel.
6) T F If the graph of a line has slope q and y-intercept ($0, r$) then the equation for the line is $y=q x+r$.
7) T F If lines x, y, and z are in the same plane, and $x \perp y$ and $y \perp z$, then $x \perp z$.
8) T F If two distinct lines on a graph have the same slope, then they are parallel.
9) $\mathrm{T} \quad \mathrm{F}$ If m is the slope of $\overline{\mathrm{AB}}$, then the slope of the perpendicular bisector of $\overline{\mathrm{AB}}$ is $\frac{-1}{m}$.
10) T F If lines x, y, and z are in the same plane, and $x \perp y$ and $y \perp z$, then $x \| z$.

For \#11 \& 12, find $m \angle 1$ and $m \angle 2$. Justify your answer with a postulate or theorem (abbreviations ok).
11)

$m \angle 1=$ \qquad
Reason \qquad
$m \angle 2=$ \qquad
Reason \qquad
12)

$m \angle 1=$ \qquad
Reason \qquad

$$
m \angle 2=
$$

Reason \qquad
13) Find the midpoint of the segment connecting points $(3,5)$ and $(-1,9)$.
14) One endpoint of $\overline{A B}$ is $A(-1,9)$. The midpoint is $(-3,6)$. Find the coordinates of the other endpoint.
15) In quadrilateral $A B C D$, with the given coordinates, are the diagonals perpendicular? Show work and explain your reasoning.
16) Write the equation in slope-intercept form of the line through point $B(4,7)$ and perpendicular to the line: $4 x+2 y=8$.

A(2, 5)
$B(3,2)$
$C(4,8)$
$D(-9,10)$
17) Write the equation in slope-intercept form of the line that is the perpendicular bisector of $\overline{A B}$. Show all work for full credit.
18) What is the equation in slope-intercept form of the line parallel to $y=2 x+3$ that contains $(4,6)$?

$$
A(9,-1) \text { and } B(1,7)
$$

Complete the following proof.
19) Given: $a \| b$
$\angle 5$ is supplementary to $\angle 2$
Prove: $l \| m$
Statement

1. $a \| b$
2. $\angle 5$ is supplementary to $\angle 2$
3. $\angle 1 \cong \angle 5$
4. $\angle 1$ is supplementary to $\angle 2$
5. \qquad

supplementary to $\angle 2$
\qquad
\qquad
\qquad
20) Solve for x and y : (4 pts)

$$
-8 x+y=-17 \text { and } 5 x-3 y=-6
$$

Identify each statement as either true (T) or false (F) by circling the correct choice
21) T F A triangle with all the sides equal in measure is acute.
22) T F The capital letters CPCTC are an abbreviation for the phrase "corresponding parts of congruent triangles are congruent."
23) $\mathrm{T} \quad \mathrm{F}$ The sum of the measures of the three angles of an obtuse triangle is greater than the sum of the measures of the three angles of an acute triangle.
24) T F If the base angles of an isosceles triangle each measure 37°, then the vertex angle has a measure of 106°.
25) T F If a triangle has two angles of equal measure, then the third angle is obtuse.
26) $\mathrm{T} \quad \mathrm{F}$ If $\triangle \mathrm{DGO}$ is congruent to $\triangle \mathrm{TRA}$, then $\overline{D G}$ is congruent to $\overline{T A}$.
27) $T \quad F$ The largest side of a triangle is opposite the smallest angle.
28) Find the lengths of the missing sides. SHOW WORK.!

29) $\mathrm{PR}=\mathrm{QR}$ and $\mathrm{QS}=\mathrm{RS}$. If the $\mathrm{m} \angle \mathrm{RSQ}=130^{\circ}$, what is the $\mathrm{m} \angle \mathrm{QPR}$?

30) Find the measure of the missing variable.

Provide each missing reason or statement in the proof.
31) Given: $\angle D \cong \angle C$

32) Given: $\angle 1 \cong \angle 2$

Prove: $\overline{A C} \cong \overline{B C}$

Statements

1. $\angle 1 \cong \angle 2$
2. $\angle 3 \cong \angle 4$
3. $\overline{C X} \cong \overline{C X}$
4. $\triangle A X C \cong \triangle B X C$
5. $\overline{A C} \cong \overline{B C}$

Reasons
1.
2.
3.
4.
5. \qquad
33) Write a proof.

Given: $\quad \overline{\mathrm{PR}} \cong \overline{\mathrm{PQ}}$

$$
\overline{\mathrm{PT}} \cong \overline{\mathrm{PS}}
$$

Prove: $\quad \overline{\mathrm{QS}} \cong \overline{\mathrm{RT}}$
34) Given: $\angle \mathrm{ZWX} \cong \angle \mathrm{YXW}, \angle \mathrm{ZXW} \cong \angle \mathrm{YWX}$

Prove: $\triangle \mathrm{ZJW} \cong \Delta \mathrm{YJX}$

