Chapter 3 & 4 – Final Review

Identify each statement as either true (T) or false (F) by circling the correct choice.

1)	Т	F	The slope of a line depends on which points on the line you choose to calculate it.	6)	Т	F	If the graph of a line has slope q and y-intercept (0, r) then the equation for the line is $y = qx + r$.
2)	Т	F	If two parallel lines are cut by a transversal then the alternate interior angles are supplementary.	7)	Т	F	If lines <i>x</i> , <i>y</i> , and <i>z</i> are in the same plane, and $x \perp y$ and $y \perp z$, then $x \perp z$.
3)	Т	F	You can determine the slope of a segment if you are given only the coordinates of its midpoint.	8)	Т	F	If two distinct lines on a graph have the same slope, then they are
4)	Т	F	If any two lines are cut by a transversal then the alternate exterior angles are congruent.	9)	Т	F	parallel. If <i>m</i> is the slope of \overline{AB} , then the
5)	Т	F	If two lines are cut by a transversal forming pairs of congruent corresponding angles, congruent				slope of the perpendicular bisector of \overline{AB} is $\frac{-1}{m}$.
			alternate interior angles, or congruent alternate exterior angles, then the lines are parallel	10)	Т	F	If lines <i>x</i> , <i>y</i> , and <i>z</i> are in the same plane, and $x \perp y$ and $y \perp z$, then

For #11 & 12, find $m \ge 1$ and $m \ge 2$. Justify your answer with a postulate or theorem (abbreviations ok).

13) Find the midpoint of the segment connecting points (3,5) and (-1, 9).

then the lines are parallel.

14) One endpoint of AB is A(-1, 9). The midpoint is (-3, 6). Find the coordinates of the other endpoint.

 $x \parallel z$.

- 15) In quadrilateral *ABCD*, with the given coordinates, are the diagonals perpendicular? <u>Show</u> work and <u>explain</u> your reasoning.
 - A(2, 5) B(3, 2) C(4, 8) D(-9, 10)

16) Write the equation in slope-intercept form of the line through point B(4,7) and perpendicular to the line: 4x + 2y = 8.

17) Write the equation in slope-intercept form of the line that is the **perpendicular bisector** of \overline{AB} . Show all work for full credit.

A(9,–1) and *B*(1,7)

18) What is the equation in slope-intercept form of the line parallel to y = 2x + 3 that contains (4, 6)?

Complete the following proof.

19) Given: $a \parallel b$ $\angle 5$ is supplementary to $\angle 2$

Prove: $l \parallel m$

Statement 1. $a \parallel b$

- 2. $\angle 5$ is supplementary to $\angle 2$
- 3. ∠1 ≅ ∠5
- 4. $\angle 1$ is supplementary to $\angle 2$
- 5. _____

20) Solve for x and y: (4 pts)

-8x + y = -17 and 5x - 3y = -6

Identify each statement as either true (T) or false (F) by circling the correct choice

21) T	F	A triangle with all the sides equal in measure is acute.	25) T	F	If a triangle has two angles of equal measure, then the third angle is obtuse.
22) T	F	The capital letters CPCTC are an abbreviation for the phrase "corresponding parts of congruent triangles are congruent."	26) T	F	If $\triangle DGO$ is congruent to $\triangle TRA$, then \overline{DG} is congruent to \overline{TA} .
23) T	S F	The sum of the measures of the three angles of an obtuse triangle is greater than the sum of the measures of the three angles of an acute triangle.	27) T	F	The largest side of a triangle is opposite the smallest angle.
24) T	F	If the base angles of an isosceles triangle each measure 37°, then the vertex angle has a measure of 106°.			

28) Find the lengths of the missing sides. SHOW WORK.!

30) Find the measure of the missing variable.

Provide each missing reason or statement in the proof.

- 2. $\angle 3 \cong \angle 4$
- 3. $\overline{CX} \cong \overline{CX}$
- 4. $\Delta AXC \cong \Delta BXC$
- 5. $\overline{AC} \cong \overline{BC}$

33) Write a proof.

34) Given: $\angle ZWX \cong \angle YXW$, $\angle ZXW \cong \angle YWX$ Prove: $\triangle ZJW \cong \triangle YJX$

